Blood viscosity during coagulation at different shear rates

نویسندگان

  • Marco Ranucci
  • Tommaso Laddomada
  • Matteo Ranucci
  • Ekaterina Baryshnikova
چکیده

During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone-on-plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec(-1). On the basis of the time-dependent changes in blood viscosity, we identified the gel point (GP), the time-to-gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half-time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec(-1) (P = 0.038) and 80 sec(-1) (P = 0.019). The MCV was significantly lower at a SR of 80 sec(-1) versus 40 sec(-1) (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well-known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo- or hypercoagulability are required to confirm its role in the clinical practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rennet-induced milk coagulation by continuous steady shear stress.

The effect of continuous steady shear stress (CSSS) on rennet-induced coagulation of milk was studied by measuring the change in viscosity of the system with time. Continuous shear stress (< or =0.5 Pa) applied during coagulation did not counteract the network formation at standard cheese-making conditions. In fact, CSSS of 0.2 Pa promoted coagulation by possibly increasing diffusion, collision...

متن کامل

Rheology of embryonic avian blood.

Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where th...

متن کامل

Viscosity and Clotting of Blood in Venous Thrombosis and Coronary Occlusions.

• In a recent paper on thixotropy of blood and proneness to thrombus formation, Dintenfass stressed four important points. (1) Human blood, normal as well as abnormal, exhibits thixotropy and consequently red cells are aggregated in a reversible manner both in normal and abnormal blood. (2) Viscosity of blood in a few cases of thrombosis and coronary occlusion was found to be up to tenfold grea...

متن کامل

An Overview on Platelet-derived Microparticles in Platelet Concentrates: blood collection, method preparation and storage

Preparations of platelet concentrates (PCs) that are stored under blood bank conditions and used for transfusion purposes, appear to be enriched in platelet derived-microparticles (PMPs) with high coagulant activity that may change platelet efficacy and safety issues. High shear stress could cause shedding of PMPs from the platelet plasma membrane, platelet aggregation, and activation of the co...

متن کامل

Influence of deformability of human red cells upon blood viscosity.

The viscosity of blood at high rates of shear is unusually low compared to other suspensions of similar concentration. The underlying mechanisms were studied by rotational viscometry, red cell filtration, viscometry of packed cells and direct microscopic observation of red cells under flow in a transparent cone plate viscometer. Deformability of red cells was altered osmotically or abolished by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014